Nonparametric stochastic discount factor decomposition
Timothy M. Christensen
No 24/15, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
We introduce econometric methods to perform estimation and inference on the permanent and transitory components of the stochastic discount factor (SDF) in dynamic Markov environments. The approach is nonparametric in that it does not impose parametric restrictions on the law of motion of the state process. We propose sieve estimators of the eigenvalue-eigenfunction pair which are used to decompose the SDF into its permanent and transitory components, as well as estimators of the long-run yield and the entropy of the permanent component of the SDF, allowing for a wide variety of empirically relevant setups. Consistency and convergence rates are established. The estimators of the eigenvalue, yield and entropy are shown to be asymptotically normal and semiparametrically efficient when the SDF is observable. We also introduce nonparametric estimators of the continuation value under Epstein-Zin preferences, thereby extending the scope of our estimators to an important class of recursive preferences. The estimators are simple to implement, perform favorably in simulations, and may be used to numerically compute the eigenfunction and its eigenvalue in fully specified models when analytical solutions are not available.
Date: 2015-06-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2415.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:24/15
DOI: 10.1920/wp.cem.2015.2415
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().