Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter
Joel L. Horowitz
No 30/13, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
In nonparametric instrumental variables estimation, the mapping that identifies the function of interest, g say, is discontinuous and must be regularised (that is, modified) to make consistent estimation possible. The amount of modification is controlled by a regularisation parameter. The optimal value of this parameter depends on unknown population characteristics and cannot be calculated in applications. Theoretically justified methods for choosing the regularisation parameter empirically in applications are not yet available. This paper presents such a method for use in series estimation, where the regularisation parameter is the number of terms in a series approximation to g. The method does not required knowledge of the smoothness of g or of other unknown functions. It adapts to their unknown smoothness. The estimator of g based on the empirically selected regularisation parameter converges in probability at a rate that is at least as fast as the asymptotically optimal rate multiplied by (logn)1/2, where n is the sample size. The asymptotic integrated mean-square error (AIMSE) of the estimator is within a specified factor of the optimal AIMSE.
Date: 2013-07-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP3013.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:30/13
DOI: 10.1920/wp.cem.2013.3013
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().