EconPapers    
Economics at your fingertips  
 

Rebayes: an R package for empirical bayes mixture methods

Jiaying Gu and Roger Koenker

No 37/17, CeMMAP working papers from Institute for Fiscal Studies

Abstract: Models of unobserved heterogeneity, or frailty as it is commonly known in survival analysis, can often be formulated as semiparametric mixture models and estimated by maximum likelihood as proposed by Robbins (1950) and elaborated by Kiefer and Wolfowitz (1956). Recent developments in convex optimization, as noted by Koenker and Mizera (2014b), have led to dramatic improvements in computational methods for such models. In this vignette we describe an implementation contained in the R package REBayes with applications to a wide variety of mixture settings: Gaussian location and scale, Poisson and binomial mixtures for discrete data, Weibull and Gompertz models for survival data, and several Gaussian models intended for longitudinal data. While the dimension of the nonparametric heterogeneity of these models is inherently limited by our present gridding strategy, we describe how additional fixed parameters can be relatively easily accommodated via prole likelihood. We also describe some nonparametric maximum likelihood methods for shape and norm constrained density estimation that employ related computational methods.This paper was published in Journal of Statistical Software, 82, 1-26, (2017).

Date: 2017-08-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP3717.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:37/17

DOI: 10.1920/wp.cem.2017.3717

Access Statistics for this paper

More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().

 
Page updated 2025-03-19
Handle: RePEc:azt:cemmap:37/17