Nonparametric instrumental variable estimation under monotonicity
Denis Chetverikov and
Daniel Wilhelm
No 39/15, CeMMAP working papers from Institute for Fiscal Studies
Abstract:
The ill-posedness of the inverse problem of recovering a regression function in a nonparametric instrumental variable model leads to estimators that may suffer from a very slow, logarithmic rate of convergence. In this paper, we show that restricting the problem to models with monotone regression functions and monotone instruments significantly weakens the ill-posedness of the problem. In stark contrast to the existing literature, the presence of a monotone instrument implies boundedness of our measure of ill-posedness when restricted to the space of monotone functions. Based on this result we derive a novel non-asymptotic error bound for the constrained estimator that imposes monotonicity of the regression function. For a given sample size, the bound is independent of the degree of ill-posedness as long as the regression function is not too steep. As an implication, the bound allows us to show that the constrained estimator converges at a fast, polynomial rate, independently of the degree of ill-posedness, in a large, but slowly shrinking neighborhood of constant functions. Our simulation study demonstrates significant finite-sample performance gains from imposing monotonicity even when the regression function is rather far from being a constant. We apply the constrained estimator to the problem of estimating gasoline demand functions from U.S. data.
Date: 2015-07-13
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP3915.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:39/15
DOI: 10.1920/wp.cem.2015.3915
Access Statistics for this paper
More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().