EconPapers    
Economics at your fingertips  
 

Forecasting Disaggregated Food Inflation Baskets in Colombia with an XGBoost Model

César Anzola Bravo and Paola Poveda

Borradores de Economia from Banco de la Republica de Colombia

Abstract: Food prices have consistently been one of the leading contributors to Colombia’s inflation rate. They are particularly sensitive to exogenous factors such as extreme weather events, supply chain disruptions, and global commodity price shocks, often resulting in sharp and unpredictable price fluctuations. This document pursues two main objectives. First, it aims to estimate and evaluate methods for forecasting 33 homogeneous food inflation baskets, which together constitute the total food Consumer Price Index (Food CPI), offering tools that can assist policymakers in anticipating the drivers of future inflation. This includes both traditional time series models and modern machine learning approaches. Second, it seeks to enhance the interpretability of model predictions through explainable AI techniques. To achieve this, we propose a variable lag selection algorithm to identify optimal feature-lag pairs, and employ SHAP (SHapley Additive exPlanations) values to quantify the contribution of each feature to the model’s forecast. Our findings indicate that machine learning models outperform traditional approaches in forecasting food inflation, delivering improved accuracy across most individual baskets as well as for aggregated food inflation. *****RESUMEN: Los precios de los alimentos han sido uno de los principales factores que contribuyen a la inflación en Colombia. Estos son particularmente sensibles a factores externos como choques climáticos, interrupciones en las cadenas globales de valor y choques en los precios de los productos básicos a nivel global, lo que resulta en fluctuaciones impredecibles de precios. Este documento tiene dos objetivos. En primer lugar, busca estimar y evaluar métodos para pronosticar 33 canastas homogéneas de inflación de alimentos, ofreciendo herramientas que puedan ayudar a los hacedores de política anticipar los factores que afectan la inflación de alimentos futura. Esto incluye tanto modelos tradicionales de series de tiempo como enfoques modernos de machine learning. En segundo lugar, se propone mejorar la interpretabilidad de las predicciones de los modelos mediante técnicas de explainableAI. Para ello, proponemos un algoritmo de selección de variables que identifique las variables explicativas más relevantes, y utilizamos valores SHAP (SHapley Additive exPlanations) para cuantificar la contribución de cada variable explicativa en las predicciones del modelo. Nuestros hallazgos indican que los modelos de machine learning superan a los enfoques tradicionales en el pronóstico de la inflación de alimentos, logrando una mayor precisión tanto en la mayoría de las canastas individuales como en la inflación de alimentos agregada.

Keywords: Macroeconomic Forecasts; Food Prices; Machine learning; Pronóstico Macroeconómico; Inflación de alimentos (search for similar items in EconPapers)
JEL-codes: C53 E31 E37 (search for similar items in EconPapers)
Pages: 43
Date: 2025-12
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.32468/be.1335

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bdr:borrec:1335

Access Statistics for this paper

More papers in Borradores de Economia from Banco de la Republica de Colombia Cra 7 # 14-78. Contact information at EDIRC.
Bibliographic data for series maintained by Clorith Angélica Bahos Olivera ().

 
Page updated 2025-12-20
Handle: RePEc:bdr:borrec:1335