Variable Selection in Predictive MIDAS Models
Clément Marsilli
Working papers from Banque de France
Abstract:
In short-term forecasting, it is essential to take into account all available information on the current state of the economic activity. Yet, the fact that various time series are sampled at different frequencies prevents an efficient use of available data. In this respect, the Mixed-Data Sampling (MIDAS) model has proved to outperform existing tools by combining data series of different frequencies. However, major issues remain regarding the choice of explanatory variables. The paper first addresses this point by developing MIDAS based dimension reduction techniques and by introducing two novel approaches based on either a method of penalized variable selection or Bayesian stochastic search variable selection. These features integrate a cross-validation procedure that allows automatic in-sample selection based on recent forecasting performances. Then the developed techniques are assessed with regards to their forecasting power of US economic growth during the period 2000-2013 using jointly daily and monthly data. Our model succeeds in identifying leading indicators and constructing an objective variable selection with broad applicability.
Keywords: Forecasting; Mixed frequency data; MIDAS; Variable selection; GDP. (search for similar items in EconPapers)
JEL-codes: C53 E37 (search for similar items in EconPapers)
Pages: 39 pages
Date: 2014
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-for and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://publications.banque-france.fr/sites/defaul ... g-paper_520_2014.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bfr:banfra:520
Access Statistics for this paper
More papers in Working papers from Banque de France Banque de France 31 Rue Croix des Petits Champs LABOLOG - 49-1404 75049 PARIS. Contact information at EDIRC.
Bibliographic data for series maintained by Michael brassart ().