Econometrics on GPUs
Sonik Mandal,
Mohammad Zubair and
Michael Creel
No 669, Working Papers from Barcelona School of Economics
Abstract:
A graphical processing unit (GPU) is a hardware device normally used to manipulate computer memory for the display of images. GPU computing is the practice of using a GPU device for scientific or general purpose computations that are not necessarily related to the display of images. Many problems in econometrics have a structure that allows for successful use of GPU computing. We explore two examples. The first is simple: repeated evaluation of a likelihood function at different parameter values. The second is a more complicated estimator that involves simulation and non parametric fitting. We find speedups from 1.5 up to 55.4 times, compared to computations done on a single CPU ore. These speedups an be obtained with very little expense, energy consumption, and time dedicated to system maintenance, compared to equivalent performance solutions using CPUs. Code for the examples is provided.
Keywords: Bayesian estimation; simulation-based methods; parallel computing; graphical processing unit; GPU; econometrics (search for similar items in EconPapers)
JEL-codes: C13 C14 C15 C33 (search for similar items in EconPapers)
Date: 2015-09
References: Add references at CitEc
Citations:
Downloads: (external link)
https://bw.bse.eu/wp-content/uploads/2015/09/669-file.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bge:wpaper:669
Access Statistics for this paper
More papers in Working Papers from Barcelona School of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Bruno Guallar ().