Partially Censored Posterior for robust and efficient risk evaluation
Agnieszka Borowska,
Lennart Hoogerheide,
Siem Jan Koopman and
Herman van Dijk
Additional contact information
Agnieszka Borowska: Vrije Universiteit Amsterdam and Tinbergen Institute
Lennart Hoogerheide: Vrije Universiteit Amsterdam and Tinbergen Institute
No 2019/12, Working Paper from Norges Bank
Abstract:
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach originates from the Bayesian approach to parameter estimation and time series forecasting, however it is robust in the sense that it provides a more accurate estimation of the predictive density in the region of interest in case of misspecification. The first main contribution of the paper is the novel concept of the Partially Censored Posterior (PCP), where the set of model parameters is partitioned into two subsets: for the first subset of parameters we consider the standard marginal posterior, for the second subset of parameters (that are particularly related to the region of interest) we consider the conditional censored posterior. The censoring means that observations outside the region of interest are censored: for those observations only the probability of being outside the region of interest matters. This quasi-Bayesian approach yields more precise parameter estimation than a fully censored posterior for all parameters, and has more focus on the region of interest than a standard Bayesian approach. The second main contribution is that we introduce two novel methods for computationally efficient simulation: Conditional MitISEM, a Markov chain Monte Carlo method to simulate model parameters from the Partially Censored Posterior, and PCP-QERMit, an Importance Sampling method that is introduced to further decrease the numerical standard errors of the Value-at-Risk and Expected Shortfall estimators. The third main contribution is that we consider the effect of using a timevarying boundary of the region of interest, which may provide more information about the left tail of the distribution of the standardized innovations. Extensive simulation and empirical studies show the ability of the introduced method to outperform standard approaches.
Keywords: Bayesian inference; censored likelihood; censored posterior; partially censored posterior; misspecification; density forecasting; Markov chain Monte Carlo; importance sampling; mixture of Student’s t; Value-at-Risk; Expected Shortfall. (search for similar items in EconPapers)
Pages: 31 pages
Date: 2019-08-09
New Economics Papers: this item is included in nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.norges-bank.no/en/news-events/news-pub ... -Papers/2019/122019/
Related works:
Journal Article: Partially censored posterior for robust and efficient risk evaluation (2020) 
Working Paper: Partially Censored Posterior for Robust and Efficient Risk Evaluation (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bno:worpap:2019_12
Access Statistics for this paper
More papers in Working Paper from Norges Bank Contact information at EDIRC.
Bibliographic data for series maintained by ().