Conditional Quantile Estimation for GARCH Models
Zhijie Xiao and
Roger Koenker
No 725, Boston College Working Papers in Economics from Boston College Department of Economics
Abstract:
Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study estimation of conditional quantiles for GARCH models using quantile regression. Quantile regression estimation of GARCH models is highly nonlinear; we propose a simple and effective two-step approach of quantile regression estimation for linear GARCH time series. In the first step, we employ a quan- tile autoregression sieve approximation for the GARCH model by combining information over different quantiles; second stage estimation for the GARCH model is then carried out based on the first stage minimum distance estimation of the scale process of the time series. Asymptotic properties of the sieve approximation, the minimum distance estimators, and the final quantile regression estimators employing generated regressors are studied. These results are of independent interest and have applications in other quantile regression settings. Monte Carlo and empirical application results indicate that the proposed estimation methods outperform some existing conditional quantile estimation methods.
Keywords: Quantile Regression; GARCH; Value-at-Risk (search for similar items in EconPapers)
JEL-codes: C13 C21 C22 (search for similar items in EconPapers)
Date: 2009-03-13
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://fmwww.bc.edu/EC-P/wp725.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:boc:bocoec:725
Access Statistics for this paper
More papers in Boston College Working Papers in Economics from Boston College Department of Economics Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().