EconPapers    
Economics at your fingertips  
 

Validating a user-developed bivariate pseudo-random vector generator

Joseph Terza

2021 Stata Conference from Stata Users Group

Abstract: Testing based on simulated data is an important component of the design and assessment of a newly developed estimation method. Often, the relevant modeling context involves bivariate outcomes, for example, endogenous treatment-effect (ETE) models and nonlinear seemingly unrelated regressions (SUR). Stata offers reliable commands for univariate pseudo-random-number generators for a wide variety of probability distributions but, as is the case for all statistical software packages, does not provide similar commands for bivariate pseudodata simulation. This is of course reasonable, given the myriad of extant bivariate probability laws and the inherent technical challenges posed by the lack of a generic bivariate version of the inverse transform theorem. In such cases, it is left to the researcher to develop and implement the requisite bivariate data generator using Stata programming or Mata code. Reliability must be established before using such a user-developed simulator to generate data for assessing the feasibility, accuracy, and precision of a newly developed estimator. We propose a Mata-based approach for validating user-developed bivariate simulator reliability based on comparison of the cumulative bivariate relative frequencies for the generated data to the corresponding “true” bivariate cumulative distribution function values. Interesting illustrative examples in the ETE and SUR contexts are discussed.

Date: 2021-08-07
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:scon21:35

Access Statistics for this paper

More papers in 2021 Stata Conference from Stata Users Group Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-03-22
Handle: RePEc:boc:scon21:35