EconPapers    
Economics at your fingertips  
 

One weird trick for better inference in experimental designs

Austin Nichols
Additional contact information
Austin Nichols: Abt Associates

2021 Stata Conference from Stata Users Group

Abstract: A long line of research debates the merits of statistical adjustment for baseline or pretreatment characteristics for random assignment designs (Fisher 1935; Freedman 2008a, 2008b; Lin 2013; Kallus 2018). A related literature explores better methods to conduct statistical adjustment for potential confounders in nonexperimental designs. This presentation presents the results of a simulation showing large potential improvements in inference for random assignment designs attainable using commands designed to adjust for potential confounders newly available in Stata 16.

Date: 2021-08-07
References: Add references at CitEc
Citations:

Downloads: (external link)
http://fmwww.bc.edu/repec/scon2021/US21_Nicols.pdf
Our link check indicates that this URL is bad, the error code is: 404 Not Found

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:scon21:9

Access Statistics for this paper

More papers in 2021 Stata Conference from Stata Users Group Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-03-19
Handle: RePEc:boc:scon21:9