EconPapers    
Economics at your fingertips  
 

Multiple imputation of missing data in longitudinal health records

Irene Petersen and Catherine Welch
Additional contact information
Irene Petersen: UCL Department of Primary Care and Population Health
Catherine Welch: UCL Department of Primary Care and Population Health

United Kingdom Stata Users' Group Meetings 2013 from Stata Users Group

Abstract: Electronic health records are increasingly used for epidemiological and health service research. However, missing data are often an issue when dealing with electronic records. Up to now, various approaches have been used to overcome these issues, including complete case analysis, last observation carried forward, and multiple imputation. In this presentation, we will first highlight the issues of missing data in longitudinal records and provide examples of the limitations of standard methods of multiple imputation. We will then demonstrate the new twofold user-written Stata command that implements the twofold fully conditional specification (FCS) multiple-imputation algorithm in Stata (Nevalainen, Kenward, and Virtanen, 2009. Stat Med. 28: 3657–3669.) In the application of the twofold FCS algorithm, we divide time into equal size time blocks. The algorithm then imputes missing values in the longitudinal data, imputing one time block, and then the next. The defining characteristic is that when one imputes missing values at a particular time block, only measurements at that time block and adjacent time blocks are used. This obviates some of the principal difficulties that are typically encountered when attempting to apply a standard MI approach to imputing such longitudinal data. We illustrate how the twofold FCS MI algorithm works in practice and maximizes the use of data available, even in situations where measurements are only made on a relatively small proportion of individuals in each time block. We discuss some of the strengths and limitations of the twofold FCS MI algorithm and contrast it with existing approaches to imputing longitudinal data. Lastly, we present results demonstrating the potential for gains in efficiency through use of the twofold approach compared with a more conventional “baseline MI†approach.

Date: 2013-09-16
References: Add references at CitEc
Citations:

Downloads: (external link)
http://repec.org/usug2013/welch.uk13.pptx (application/x-ms-powerpoint)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:usug13:06

Access Statistics for this paper

More papers in United Kingdom Stata Users' Group Meetings 2013 from Stata Users Group Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-03-19
Handle: RePEc:boc:usug13:06