Machine Learning on residential electricity consumption: Which households are more responsive to weather?
Jia-Ning Kang and
David Reiner
Cambridge Working Papers in Economics from Faculty of Economics, University of Cambridge
Abstract:
The introduction of smart meters has created opportunities for both utilities and policymakers to understand residential electricity consumption in greater depth. Machine learning techniques have distinct advantages over traditional approaches in dealing with extremely large volumes of high-resolution usage data. We introduce a novel clustering method to detect household behaviour using different types of weather data as proxies. Based on this approach, we combine Irish smart meter and weather data to identify and characterize clear differences in the daily patterns between workdays and weekends in both summer and winter and investigate how households respond to changing weather patterns. We also examine the relationships between response groups and household demographic features using different statistical tests. We find the magnitude of the effect of occupancy-related variables in the clustering of weather sensitivity to be larger than incomerelated factors. This proposed new approach could be the basis of a classification model to identify households that are more responsive to different types of weather. Tariff design could benefit from such a model and enable specific schemes to be developed that would target weather-sensitive households and result in improved load management.
Keywords: Weather sensitivity; smart metering data; unsupervised learning; clusters; residential electricity; consumption patterns; Ireland (search for similar items in EconPapers)
JEL-codes: C55 D12 Q41 R22 (search for similar items in EconPapers)
Date: 2021-05-12
New Economics Papers: this item is included in nep-cmp and nep-ene
Note: dmr40
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econ.cam.ac.uk/sites/default/files/pub ... pe-pdfs/cwpe2142.pdf
Related works:
Working Paper: Machine Learning on residential electricity consumption: Which households are more responsive to weather? (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cam:camdae:2142
Access Statistics for this paper
More papers in Cambridge Working Papers in Economics from Faculty of Economics, University of Cambridge
Bibliographic data for series maintained by Jake Dyer ().