Bayes Estimation of Short-run Coefficients in Dynamic Panel Data Models
Cheng Hsiao,
Mohammad Pesaran and
A. K. Tahmiscioglu
Cambridge Working Papers in Economics from Faculty of Economics, University of Cambridge
Abstract:
This study is concerned with estimating the mean of the coefficients in a dynamic panel data model when the coefficients are assumed to be randomly distributed across cross- sectional units. The authors suggest a Bayes approach to the estimation of such models using Markov chain Monte Carlo methods. They establish the asymptotic equivalence of the Bayes estimator and the mean group estimator proposed by Pesaran and Smith (1995), and show that the Bayes estimator is asymptotically normal for large N (the number of units) and large T (the number of time periods) so long as /N/T60 as both N> and T 64. The performance of the Bayes estimator for the short-run coefficients in dynamic panels is also compared against alternative estimators using both simulated and real data. The Monte Carlo results show that the Bayes estimator has better sampling properties than other estimators for both small and moderate T samples. The analysis of Tobin's q model yields new results.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (34)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cam:camdae:9804
Access Statistics for this paper
More papers in Cambridge Working Papers in Economics from Faculty of Economics, University of Cambridge
Bibliographic data for series maintained by Jake Dyer ().