Energy-aware Trajectory Optimization of Connected and Automated Vehicle Platoons through a Signalized Intersection
Xiao PhD Han,
Rui PhD Ma and
H. Michael PhD Zhang
Institute of Transportation Studies, Working Paper Series from Institute of Transportation Studies, UC Davis
Abstract:
Traffic signals, while serving an important function to coordinate vehicle movements through intersections, also cause frequent stops and delays, particularly when they are not properly timed. Such stops and delays contribute to significant amount of fuel consumption and greenhouse gas emissions. The recent development of connected and automated vehicle (CAV) technology provides new opportunities to enable better control of vehicles and intersections, that in turn reduces fuel consumption and emissions. In this paper, we propose platoon-trajectory-optimization (PTO) to minimize the total fuel consumption of a CAV platoon through a signalized intersection. In this approach, all CAVs in one platoon are considered as a whole, that is, all other CAVs follow the trajectory of the leading one with a time delay and minimum safety gap, which is enabled by vehicle to vehicle communication. Moreover, the leading CAV in the platoon learns of the signal timing plan just after it enters the approach segment through vehicle to infrastructure communication. We compare our PTO control with the other two controls, in which the leading vehicle adopts the optimal trajectory (LTO) or drive with maximum speed (AT), respectively, and the other vehicles follow the leading vehicle with a simplified Gipps’ car-following model. Furthermore, we extend the controls into multiple platoons by considering the interactions between the two platoons. The numerical results demonstrate that PTO has better performance than LTO and AT, particularly when CAVs have enough space and travel time to smooth their trajectories. The reduction of travel time and fuel consumption can be as high as 40% and 30% on average, respectively, in the studied cases, which shows the great potential of CAV technology in reducing congestion and negative environmental impact of automobile transportation.
Keywords: Engineering; Connect vehicles; autonomous vehicles; traffic platooning; fuel consumption; vehicle trajectories; trajectory controld (search for similar items in EconPapers)
Date: 2019-06-01
New Economics Papers: this item is included in nep-ene, nep-tre and nep-ure
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.escholarship.org/uc/item/00d6591g.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsdav:qt00d6591g
Access Statistics for this paper
More papers in Institute of Transportation Studies, Working Paper Series from Institute of Transportation Studies, UC Davis Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().