A Method for Relating Type of Crash to Traffic Flow Characteristics on Urban Freeways
Thomas F. Golob and
Wilfred W. Recker
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
A method is developed to determine how crash characteristics are related to traffic flow conditions at the time of occurrence. Crashes are described in terms of the type and location of the collision, the number of vehicles involved, movements of these vehicles prior to collision, and severity. Traffic flow is characterized by central tendencies and variations of traffic flow and flow/occupancy for three different lanes at the time and place of the crash. The method involves nonlinear canonical correlation applied together with cluster analyses to identify traffic flow regimes with distinctly different crash taxonomies. A case study using data for more than 1,000 crashes in Southern California identified twenty-one traffic flow regimes for three different ambient conditions: dry roads during daylight (eight regimes), dry roads at night (six regimes), and wet conditions (seven regimes). Each of these regimes has a unique profile in terms of the type of crashes that are most likely to occur, and a matching of traffic flow parameters and crash characteristics reveals ways in which congestion affects highway safety.
Keywords: Engineering (search for similar items in EconPapers)
Date: 2003-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.escholarship.org/uc/item/7n64466d.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt7n64466d
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().