Detection and Avoidance of Collisions: the REACT Model
Craig Sauer,
George J. Andersen and
Asad Saidpour
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
An important perceptual task during driving is the ability to detect and avoid collisions. Failure to accurately perform this task can have serious consequences for the driver and passengers. The present research developed and tested a model of car following by human drivers, as part of a general model under development of a human driver. Unlike other car following models that are based on 3D parameters (e.g., range or distance) the present model is based on the visual information available to the driver. The model uses visual angle and change in visual angle to regulate speed during car following. Human factors experiments in a driving simulator examined performance in car following to speed variations defined by sine wave oscillations in speed, sum of sine wave oscillations, and ramp function. In addition, using real world driving data the model was applied to 6 driving events. The model provided a good fit to car following performance in the driving simulation studies as well as the real-world driving data, accounting for up to 96% of the variability in speed for the real world driving events.
Keywords: Engineering (search for similar items in EconPapers)
Date: 2004-04-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.escholarship.org/uc/item/7st785tt.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt7st785tt
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().