Adaptive Control for Conventional Modes of Operation of MEMS Gyroscopes
Park Park,
Roberto Horowitz and
Chin-woo Tan
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
This report presents adaptive control algorithms for conventional modes of operation of MEMS z-axis gyroscopes. In an open-loop mode, an off-line self-calibration scheme is proposed for estimating fabrication imperfections and enhancing the performance of a gyroscope operating in open-loop mode. This scheme can be implemented during the initial calibration stage when the gyroscope is turned on, or at regular calibration sessions, which may be performed periodically. An adaptive add-on control scheme is also proposed for a closed-loop mode of operation. This scheme is realized by adding an outer loop to a conventional force-balancing scheme that includes a parameter estimation algorithm. This parameter adaptation algorithm estimates the angular rate, identifies and compensates the quadrature error, and may permit on-line automatic mode tuning. The convergence and resolution analysis show that the proposed adaptive add-on control scheme prevents the angular rate estimate from being contaminated by the quadrature error, while keeping ideal resolution performance of a conventional force-balancing scheme.
Date: 2002-03-01
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.escholarship.org/uc/item/83v0r9m1.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt83v0r9m1
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().