A Parametric Approach to Flexible Nonlinear Inference
James Hamilton
University of California at San Diego, Economics Working Paper Series from Department of Economics, UC San Diego
Abstract:
This paper proposes a new framework for determining whether a given relationship is nonlinear, what the nonlinearity looks like, and whether it is adequately described by a particular parametric model. The paper studies a regression or forecasting model of the form yt = µ(xt) + et where the functional form of µ(.) is unknown. We propose viewing µ(.) itself as the outcome of a random process. The paper introduces a new stationary random random field m(.) that generalizes finite-differenced Brownian motion to a vector field and whose realizations could represent a broad class of possible forms for µ(.). We view the parameters that characterize the relation between a given realization of m(.) and the particular value of µ(.) for a given sample as population parameters to be estimated by maximum likelihood or Bayesian methods. We show that the resulting inference about the functional relation also yields consistent estimates for a broad class of deterministic functions µ(.). The paper further develops a new test of the null hypothesis of linearity based on the Lagrange multiplier principle and small-sample confidence intervals based on numerical Bayesian methods. An empirical application suggests that properly accounting for the nonlinearity of the inflation-unemployment tradeoff may explain the previously reported uneven empirical success of the Phillips Curve.
Keywords: determinant functions; nonlinear inference (search for similar items in EconPapers)
Date: 1999-01-01
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.escholarship.org/uc/item/68s8157x.pdf;origin=repeccitec (application/pdf)
Related works:
Journal Article: A Parametric Approach to Flexible Nonlinear Inference (2001)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:ucsdec:qt68s8157x
Access Statistics for this paper
More papers in University of California at San Diego, Economics Working Paper Series from Department of Economics, UC San Diego Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().