An Asymptotic Expansion with Push-Down of Malliavin Weights
Akihiko Takahashi and
Toshihiro Yamada
Additional contact information
Akihiko Takahashi: Faculty of Economics, University of Tokyo
Toshihiro Yamada: Mitsubishi UFJ Trust Investment Technology Institute Co.,Ltd. (MTEC)
No CARF-F-194, CARF F-Series from Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo
Abstract:
This paper derives asymptotic expansion formulas for option prices and implied volatilities as well as the density of the underlying asset price in multi-dimensional stochastic volatility models. In particular, the integration-byparts formula in Malliavin calculus and the push-down of Malliavin weights are effectively applied. We provide an expansion formula for generalized Wiener functionals and closed-form approximation formulas in stochastic volatility environment. In addition, we present applications of the general formula to expansions of option prices for the shifted log-normal model with stochastic volatility. Moreover, with some results of Malliavin calculus in jump-type models, we derive an approximation formula for the jump-diffusion model in stochastic volatility environment. Some numerical examples are also shown.
Pages: 38 pages
Date: 2009-12, Revised 2011-04
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/201.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cfi:fseres:cf194
Access Statistics for this paper
More papers in CARF F-Series from Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by ().