Hedging and Pricing Illiquid Options with Market Impacts (Forthcoming in International Journal of Financial Engineering)
Taiga Saito
Additional contact information
Taiga Saito: Graduate School of Economics, University of Tokyo
No CARF-F-418, CARF F-Series from Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo
Abstract:
In this paper, we consider hedging and pricing of illiquid options on an untradable underlying asset, where an alternative asset is used as a hedging instrument. Particularly, we consider the situation where the trade price of the hedging instrument is subject to market impacts caused by the hedger and the liquidity costs paid as a spread from the mid price. Pricing illiquid options, which often appears in trading of structured products, is a critical issue in practice because of its difficulties in hedging mainly due to untradablity of the underlying asset as well as the liquidity costs and market impacts of the hedging instrument. Firstly, by setting the problem under a discrete time model, where the optimal hedging strategy is defined by the local risk-minimization, we present algorithms to obtain the option price along with the hedging strategy by an asymptotic expansion. Moreover, we provide numerical examples. This model enables the estimation of the effect of both the market impacts and the liquidity costs on option prices, which is important in practice.
Pages: 31 pages
Date: 2017-08
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/F418.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cfi:fseres:cf418
Access Statistics for this paper
More papers in CARF F-Series from Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by ().