Content Horizons for Forecasts of Economic Time Series
John Galbraith
CIRANO Working Papers from CIRANO
Abstract:
We consider the problem of determining the horizon beyond which forecasts from time series models of stationary processes add nothing to the forecast implicit in the conditional mean. We refer to this as the content horizon for forecasts, and define a forecast content function at horizons s = 1, ... S as the proportionate reduction in mean squared forecast error available from a time series forecast relative to the unconditional mean. This function depends upon parameter estimation uncertainty as well as on autocorrelation structure of the process under investigation. We give an approximate expression - to o(T-1) - for the forecast content function at s for a general autoregressive processes, and show by simulation that the expression gives a good approximation even at modest sample sizes. Finally we consider parametric and non-parametric (kernel) estimators of the empirical forecast content function, and apply the results to forecast horizons for inflation and the growth rate of GDP, in U.S. and Canadian data. Nous considérons la détermination de l'horizon après lequel les prévisions provenant des modèles des series chronologiques stationnares n'ajoutent rien à la valeur de la prévision implicite dans la moyenne. Nous appellons cette quantité le content horizon pour prévisions, et nous définissons la fonction de valeur ajoutée aux horizons s = 1, ... S par la réduction proportionnelle dans la moyenne des erreurs de prévisions carrées disponible en utilisant une prévision provenant d'un modèle formel relatif à la moyenne non-conditionelle. Cette quantité dépend de l'incertitude dans les estimés des paramètres du modèle, ainsi que des autocorrélations du processus considéré. Nous donnons une expression approximative - jusqu'à o(T-1) - pour la fonction de valeur ajoutée à s pour les processus autorégressifs généraux, et nous démontrons par simulation que l'expression est bonne même dans les petits échantillons. Enfin nous considérons les estimés paramétriques et non-paramétriques (kernel) pour la fonction de valeur ajoutée empirique, en appliquant les résultats aux horizons de prévision pour le taux de croissance du PNB et le taux d'inflation, au Canada et aux États-Unis.
Keywords: Autoregressive process; forecast horizon; GDP; inflation; Processus autorégressif; horizon de prévision; PNB; taux d'inflation (search for similar items in EconPapers)
JEL-codes: C12 C22 (search for similar items in EconPapers)
Date: 1999-04-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://cirano.qc.ca/files/publications/99s-17.pdf
Related works:
Working Paper: CONTENT HORIZONS FOR FORECASTS OF ECONOMIC TIME SERIES (1999)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cir:cirwor:99s-17
Access Statistics for this paper
More papers in CIRANO Working Papers from CIRANO Contact information at EDIRC.
Bibliographic data for series maintained by Webmaster ().