A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation
Mikhail Chernov,
A. Gallant,
Eric Ghysels (eghysels@unc.edu) and
George Tauchen (george.tauchen@duke.edu)
CIRANO Working Papers from CIRANO
Abstract:
The purpose of this paper is to propose a new class of jump diffusions which feature both stochastic volatility and random intensity jumps. Previous studies have focussed primarily on pure jump processes with constant intensity and log-normal jumps or constant jump intensity combined with a one factor stochastic volatility model. We introduce several generalizations which can better accommodate several empirical features of returns data. In their most general form we introduce a class of processes which nests jump-diffusions previously considered in empirical work and includes the affine class of random intensity models studied by Bates (1998) and Duffie, Pan and Singleton (1998) but also allows for non-affine random intensity jump components. We attain the generality of our specification through a generic Lévy process characterization of the jump component. The processes we introduce share the desirable feature with the affine class that they yield analytically tractable and explicit option pricing formula. The non-affine class of processes we study include specifications where the random intensity jump component depends on the size of the previous jump which represent an alternative to affine random intensity jump processes which feature correlation between the stochastic volatility and jump component. We also allow for and experiment with different empirical specifications of the jump size distributions. We use two types of data sets. One involves the S&P500 and the other comprises of 100 years of daily Dow Jones index. The former is a return series often used in the literature and allows us to compare our results with previous studies. The latter has the advantage to provide a long time series and enhances the possibility of estimating the jump component more precisely. The non-affine random intensity jump processes are more parsimonious than the affine class and appear to fit the data much better. Nous présentons une nouvelle classe de processus à sauts avec volatilité stochastique. Cette nouvelle classe généralise les modèles affinés proposés par Duffie, Pan et Singleton (1998). La généralité se manifeste par une représentation générique des sauts par un processus de Lévy. La classe des processus que nous présentons nous fournit également des prix d'options. Une application empirique démontre la présence de sauts dans des séries financières telles le S&P500 et le Dow Jones. De plus, les processus n'ont pas une intensité constante. Nous analysons plusieurs spécifications empiriques.
Keywords: Efficient method of moments; Poisson processes; jump processes; stochastic volatility models; filtering; Processus à sauts; mesures de Lévy; modèles à volatilité stochastique (search for similar items in EconPapers)
JEL-codes: C14 C52 C53 G13 (search for similar items in EconPapers)
Date: 1999-11-01
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
https://cirano.qc.ca/files/publications/99s-48.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cir:cirwor:99s-48
Access Statistics for this paper
More papers in CIRANO Working Papers from CIRANO Contact information at EDIRC.
Bibliographic data for series maintained by Webmaster (webmestre@cirano.qc.ca).