EconPapers    
Economics at your fingertips  
 

Indirect Estimation of Conditionally Heteroskedastic Factor Models

Enrique Sentana (), Giorgio Calzolari and Gabriele Fiorentini ()

Working Papers from CEMFI

Abstract: We derive indirect estimators of multivariate conditionally heteroskedastic factor models in which the volatilities of the latent factors depend on their past values. Specifically, we calibrate the analytical score of a Kalman-filter approximation, taking into account the inequality constraints on the auxiliary model parameters. We also study the determinants of the biases in the parameters of this approximation, and its quality. Moreover, we propose sequential indirect estimators that can handle models with large cross-sectional dimensions. Finally, we analyse the small sample behaviour of our indirect estimators and the approximate maximum likelihood procedures through an extensive Monte Carlo experiment.

New Economics Papers: this item is included in nep-ets and nep-fin
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
https://www.cemfi.es/ftp/wp/0409.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cmf:wpaper:wp2004_0409

Access Statistics for this paper

More papers in Working Papers from CEMFI Contact information at EDIRC.
Bibliographic data for series maintained by Araceli Requerey ().

 
Page updated 2019-09-20
Handle: RePEc:cmf:wpaper:wp2004_0409