EconPapers    
Economics at your fingertips  
 

Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach

Fernando Rios-Avila () and Gustavo Canavire-Bacarreza

No 15659, Documentos de Trabajo de Valor Público from Universidad EAFIT

Abstract: Following Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already implemented in Stata such as ivprobit, ivtobit, ivpoisson, heckman, and ivregress.

Keywords: MaximumLikelihood Estimation; non-linearmodels; endogeneity; two-step models; standard errors (search for similar items in EconPapers)
Pages: 22
Date: 2017-05-01
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://repository.eafit.edu.co/handle/10784/11432#.WWk0etPyvq0

Related works:
Journal Article: Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:col:000122:015659

Access Statistics for this paper

More papers in Documentos de Trabajo de Valor Público from Universidad EAFIT Contact information at EDIRC.
Bibliographic data for series maintained by Valor Público EAFIT - Centro de estudios e incidencia ().

 
Page updated 2025-03-22
Handle: RePEc:col:000122:015659