Non Linear ARX-Models: Probabilistic Properties and Consistent Recursive Estimation
P. Doukhan and
Alexandre Tsybakov
Additional contact information
P. Doukhan: U.R.A., Université Paris-Sud, France
No 1992056, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
Consider the general ARX(k, q) nonlinear process defined by the recurrence relation Yn = f(Y_(n-1),... y_(n-k), x_n,..., x_(n-q+1)) +([ xi ]_n) where { x_n},{ [xi]_n} are independent i.i.d. sequences. We study some probabilistic properties of this process in the ergodic situation and propose a recursive estimator of the stochastic gradient kind of the function f which is strongly consistent.
Date: 1992-10-01
References: Add references at CitEc
Citations:
Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp1992.html (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:1992056
Access Statistics for this paper
More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().