Boundedly Rational Nash Equilibrium: A Probabilistic Choice Approach
Hsiao-Ch. Chen,
James Friedman and
Jacques Thisse
Additional contact information
Hsiao-Ch. Chen: University of North Carolina
No 1996044, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
This paper proposes an equilibrium concept for n-person finite games based on boundedly rational decision making by players. The players are modeled as following random choice behavior in the manner of the logit model of discrete choice theory as set forth by Luce, McFadden and others. The behavior of other players determines in a natural way a lottery facing each player i. At equilibrium, each player is using the appropriate choice probabilities, given the choice probabilities used by the others in the game. The rationality of the players is parameterized on a continuum from complete rationality to uniform random choice. Using results by McKelvey and Palfrey, we show existence of an equilibrium for any finite n-person game and convergence to Nash equilibrium. We also identify conditions such that, for given rationality parameters the path of choices over time when the players use fictitious play (their beliefs about other players' choices are given by the empirical distributions of those players) converges to equilibrium.
Date: 1996-09-01
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp1996.html (text/html)
Related works:
Journal Article: Boundedly Rational Nash Equilibrium: A Probabilistic Choice Approach (1997) 
Working Paper: Boundedly rational Nash equilibrium: a probabilistic choice approach (1997)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:1996044
Access Statistics for this paper
More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().