EconPapers    
Economics at your fingertips  
 

Nonsymmetric potential-reduction methods for general cones

Yu. Nesterov

No 2006034, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)

Abstract: In this paper we propose two new nonsymmetric primal-dual potential-reduction methods for conic problems. The methods are based on the primal-dual lifting [5]. This procedure allows to construct a strictly feasible primal-dual pair related by an exact scaling relation even if the cones are not symmetric. It is important that all necessary elements of our methods can be obtained from the standard solvers for primal Newton system. The first of the proposed schemes is based on the usual affine-scaling direction. For the second one, we apply a new first-order affine-scaling direction, which incorporates in a symmetric way the gradients of primal and dual barriers. For both methods we prove the standard O( ln 1 ) complexity estimate, where is the parameter of the barrier and is the required accuracy.

Date: 2006-03
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2006.html (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2006034

Access Statistics for this paper

More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().

 
Page updated 2025-03-22
Handle: RePEc:cor:louvco:2006034