EconPapers    
Economics at your fingertips  
 

A tighter continuous time formulation for the cyclic scheduling of a mixed plant

Yves Pochet and François Warichet
Additional contact information
Yves Pochet: Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE)

No 2007026, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)

Abstract: In this paper, based on the cyclic scheduling formulation of Schilling and Pantelides [22], we propose a continuous time mixed integer linear programming (MILP) formulation for the cyclic scheduling of a mixed plant, i.e. a plant composed of batch and continuous tasks. The cycle duration is a variable of the model and the objective is to maximize productivity. By using strengthening techniques and the analysis of small polytopes related to the problem formulation, we strengthen the initial formulation by tightening some initial constraints and by adding valid inequalities. We show that this strengthened formulation is able to solve moderate size problems quicker than the initial one. However, for real size cases, it remains difficult to obtain the optimal solution of the scheduling problem quickly. Therefore, we introduce MILP-based heuristic methods in order to solve these larger instances, and show that they can provide quite good feasible solutions quickly.

Date: 2007-03
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2007.html (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2007026

Access Statistics for this paper

More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().

 
Page updated 2025-03-22
Handle: RePEc:cor:louvco:2007026