An easy test for two stationary long processes being uncorrelated via AR approximations
Cindy Shin-huei Wang () and
Cheng Hsiao
No 2008047, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
This paper proposes an easy test for two stationary autoregressive fractionally integrated moving average (ARFIMA) processes being uncorrelated via AR approximations. We prove that an ARFIMA process can be approximated well by an autoregressive (AR) model and establish the theoretical foundation of Haugh's (1976) statistics to test two ARFIMA processes being uncorrelated. Using AIC or Mallow's Cp criterion as a guide, we demonstrate through Monte Carlo studies that a lower order AR(k) model is sufficient to prewhiten an ARFIMA process and the Haugh test statistics perform very well in finite sample. We illustrate the methodology by investigating the independence between the volatility of two daily nominal dollar exchange rates-Euro and Japanese Yen and find that there exists "strongly simultaneous correlation" between the volatilities of Euro and Yen within 25 days.
Keywords: forecasting; long memory process; structural break. (search for similar items in EconPapers)
JEL-codes: C22 C53 (search for similar items in EconPapers)
Date: 2008-08-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2008.html (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2008047
Access Statistics for this paper
More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().