Split rank of triangle and quadrilateral inequalities
Santanu S. Dey () and
Quentin Louveaux ()
Additional contact information
Santanu S. Dey: Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE)
Quentin Louveaux: Montefiore Institute, Université de Liège, Belgium
No 2009055, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
A simple relaxation of two rows of a simplex tableau is a mixed integer set consisting of two equations with two free integer variables and non-negative continuous variables. Recently Andersen et al. [2] and Cornu´ejols and Margot [13] showed that the facet-defining inequalities of this set are either split cuts or intersection cuts obtained from lattice-free triangles and quadrilaterals. Through a result by Cook et al. [12], it is known that one particular class of facet- defining triangle inequality does not have a finite split rank. In this paper, we show that all other facet-defining triangle and quadrilateral inequalities have finite split rank. The proof is constructive and given a facet-defining triangle or quadrilateral inequality we present an explicit sequence of split inequalities that can be used to generate it.
Keywords: mixed integer programs; split rank; group relaxations (search for similar items in EconPapers)
Date: 2009-09-01
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2009.html (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2009055
Access Statistics for this paper
More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().