EconPapers    
Economics at your fingertips  
 

Pac-Bayesian Bounds for Sparse Regression Estimation with Exponential Weights

Pierre Alquier and Karim Lounici
Additional contact information
Pierre Alquier: Crest
Karim Lounici: Crest

No 2010-40, Working Papers from Center for Research in Economics and Statistics

Abstract: We consider the sparse regression model where the number of parametersp is larger than the sample size n. The difficulty when consideringhigh-dimensional problems is to propose estimators achieving a good compromisebetween statistical and computational performances. The BIC estimatorfor instance performs well from the statistical point of view [11] but can onlybe computed for values of p of at most a few tens. The Lasso estimator issolution of a convex minimization problem, hence computable for large valueof p. However stringent conditions on the design are required to establish fastrates of convergence for this estimator. Dalalyan and Tsybakov [19] proposea method achieving a good compromise between the statistical and computationalaspects of the problem. Their estimator can be computed for reasonablylarge p and satisfies nice statistical properties under weak assumptions on thedesign. However, [19] proposes sparsity oracle inequalities in expectation forthe empirical excess risk only. In this paper, we propose an aggregation proceduresimilar to that of [19] but with improved statistical performances. Ourmain theoretical result is a sparsity oracle inequality in probability for the trueexcess risk for a version of exponential weight estimator. We also propose aMCMC method to compute our estimator for reasonably large values of p.

Pages: 21
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://crest.science/RePEc/wpstorage/2010-40.pdf Crest working paper version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:crs:wpaper:2010-40

Access Statistics for this paper

More papers in Working Papers from Center for Research in Economics and Statistics Contact information at EDIRC.
Bibliographic data for series maintained by Secretariat General () and Murielle Jules Maintainer-Email : murielle.jules@ensae.Fr.

 
Page updated 2025-03-30
Handle: RePEc:crs:wpaper:2010-40