On the Particle Gibbs Sampler
Nicolas Chopin and
Sumeetpal Singh ()
Additional contact information
Sumeetpal Singh: Cambridge University
No 2013-41, Working Papers from Center for Research in Economics and Statistics
Abstract:
The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm which operates on the extended space of the auxiliary variables generated by an interacting particle system. In particular, it samples the discrete variables that determine the particle genealogy. We propose a coupling construction between two particle Gibbs updates from different starting points, which is such that the coupling probability may be made arbitrary large by taking the particle system large enough. A direct consequence of this result is the uniform ergodicity of the Particle Gibbs Markov kernel. We discuss several algorithmic variations of Particle Gibbs, either proposed in the literature or original. For some of these variants we are able to prove that they dominate the original algorithm in asymptotic efficiency as measured by the variance of the central limit theorem's limiting distribution. A detailed numerical study is provided to demonstrate the efficacy of Particle Gibbs and the proposed variants
Pages: 36
Date: 2013-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://crest.science/RePEc/wpstorage/2013-41.pdf Crest working paper version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:crs:wpaper:2013-41
Access Statistics for this paper
More papers in Working Papers from Center for Research in Economics and Statistics Contact information at EDIRC.
Bibliographic data for series maintained by Secretariat General () and Murielle Jules Maintainer-Email : murielle.jules@ensae.Fr.