A procedure for robust estimation and diagnostics in regression
Víctor J. Yohai
Authors registered in the RePEc Author Service: Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
We propose a new procedure for computing an approximation to regression estimates based on the minimization of a robust scale. The procedure can be applied with a large number of independent variables where the usual methods based on resampling require an unfeasible or extremely costly computer time. An important advantage of the procedure is that it can be incorporated in any high breakdown procedure and improve it with just a few seconds of computer time. The procedure minimizes the robust scale over a set of tentative parameter vectors. Each of these parameter vector is obtained as follows. We represent each data point by the vector of changes of the least squares forecasts of that observation, when each of the observations is deleted. Then the sets of possible outliers are obtained as the extreme points of the principal components of these vectors, or as the set of points with large residuals. The good performance of the procedure allows the identification of multiple outliers avoiding masking effects. The efficiency of the procedure for robust estimation and its power as an outlier detection tool are investigated in a simulation study and some examples.
Keywords: Outliers; Masking; Robust; regression (search for similar items in EconPapers)
Date: 1996-12
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... f7a91d2d0bf9/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:10710
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().