Penalized functional spatial regression
María del Carmen Aguilera Morillo,
María Durbán and
Ana M. Aguilera
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
This paper is focus on spatial functional variables whose observa- tions are realizations of a spatio-temporal functional process. In this context, a new smoothing method for functional data presenting spa- tial dependence is proposed. This approach is based on a P-spline estimation of a functional spatial regression model. As alternative to other geostatistical smoothing methods (kriging and kernel smooth- ing, among others), the proposed P-spline approach can be used to estimate the functional form of a set of sample paths observed only at a finite set of time points, and also to predict the corresponding func- tional variable at a new location within the plane of study. In order to test the good performance of the proposed method, two simulation studies and an application with real data will be developed and the results will be compared with functional kriging.
Keywords: Functional; data; P-splines; Functional; spatial; regression (search for similar items in EconPapers)
Date: 2015-06-18
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 9158d0eaa1cf/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:21206
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().