Inference in classifier systems
Jorge Muruzábal
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Classifier systems (Css) provide a rich framework for learning and induction, and they have beenı successfully applied in the artificial intelligence literature for some time. In this paper, both theı architecture and the inferential mechanisms in general CSs are reviewed, and a number of limitations and extensions of the basic approach are summarized. A system based on the CS approach that is capable of quantitative data analysis is outlined and some of its peculiarities discussed.
Keywords: Classifier; systems; Machine; learning; Exploratory; data; analysis (search for similar items in EconPapers)
Date: 1993-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 5d71debe5416/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:3730
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().