Gibbs sampling will fail in outlier problems with strong masking
Ana Justel
Authors registered in the RePEc Author Service: Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
This paper discusses the convergence of the Gibbs sampling algorithm when it is applied to the problem of outlier detection in regression models. Given any vector of initial conditions, theoretically, the algorithm converges to the true posterior distribution. However, the speed of convergence may slow down in a high dimensional parameter space where the parameters are highly correlated. We show that the effect of the leverage in regression models makes very difficult the convergence of the Gibbs sampling algorithm in sets of data with strong masking. The problem is illustrated in several examples.
Keywords: Bayesian; analysis; Leverage; Linear; regression; Scale; contamination (search for similar items in EconPapers)
Date: 1995-06
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 0c01e67e8151/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:4203
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().