Combining information in statistical modelling
Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
How to combine information from different sources is becoming an important statistical area of research under the name of Meta Analysis. This paper shows that the estimation of a parameter or the forecast of a random variable can also be seen as a process of combining information. It is shown that this approach can provide sorne useful insights on the robustness properties of sorne statistical procedures, and it also allows the comparison of statistical models within a common framework. Sorne general combining rules are illustrated using examples from ANOVA analysis, diagnostics in regression, time series forecasting, missing value estimation and recursive estimation using the Kalman Filter.
Keywords: Analysis; of; variance; Diagnostics; Forecasting; Kalman; filter; Linear; regression; Meta-Analysis; Time; series (search for similar items in EconPapers)
Date: 1995-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 39626260a455/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:4516
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().