Forecasting time series with sieve bootstrap
Andrés Modesto Alonso Fernández,
Daniel Peña and
Juan Romo
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this paper we consider bootstrap methods for constructing nonparametric prediction intervals for a general class of linear processes. Our approach uses the sieve bootstrap procedure of Biihlmann (1997) based on residual resampling from an autoregressive approximation to the given process. We show that the sieve bootstrap provides consistent estimators of the conditional distribution of future values given the observed data, assuming that the order of the autoregressive approximation increases with the sample size at a suitable rate and some restrictions about polynomial decay of the coefficients ~ j t:o of the process MA(oo) representation. We present a Monte Carlo study comparing the finite sample properties of the sieve bootstrap with those of alternative methods. Finally, we illustrate the performance of the proposed method with real data examples.
Keywords: Sieve; boots; trap; Prediction; intervals; Time; series; Linear; processes (search for similar items in EconPapers)
Date: 2000-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 2b4c9b5f9db8/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:9858
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().