Improved nonparametric confidence intervals in time series regressions
Joseph P. Romano and
Michael Wolf
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Confidence intervals in time series regressions suffer from notorious coverage problems. This is especially true when the dependence in the data is noticeable and sample sizes are small to moderate, as is often the case in empirical studies. This paper proposes a method that combines prewhitening and the studentized bootstrap. While both prewhitening and the studentized bootstrap each provides improvement over standard normal theory intervals, one can achieve a further improvement by conjoining them in an appropriate way. As a side note, it is stressed that symmetric confidence intervals equal-tailed ones, since they exhibit improved coverage accuracy. We propose concrete ways to deal with the issues of block size, choice of kernel, and choice of bandwidth. The improvements in small sample performance are supported by a simulation study.
Date: 2001-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 185df7fbfbb9/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws010201
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().