EconPapers    
Economics at your fingertips  
 

Improved nonparametric confidence intervals in time series regressions

Joseph P. Romano and Michael Wolf

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: Confidence intervals in time series regressions suffer from notorious coverage problems. This is especially true when the dependence in the data is noticeable and sample sizes are small to moderate, as is often the case in empirical studies. This paper proposes a method that combines prewhitening and the studentized bootstrap. While both prewhitening and the studentized bootstrap each provides improvement over standard normal theory intervals, one can achieve a further improvement by conjoining them in an appropriate way. As a side note, it is stressed that symmetric confidence intervals equal-tailed ones, since they exhibit improved coverage accuracy. We propose concrete ways to deal with the issues of block size, choice of kernel, and choice of bandwidth. The improvements in small sample performance are supported by a simulation study.

Date: 2001-01
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 185df7fbfbb9/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws010201

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:ws010201