EconPapers    
Economics at your fingertips  
 

Bayesian inference for the half-normal and half-t distributions

Michael Peter Wiper, F.J. Giron and A. Pewsey

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: In this article we consider approaches to Bayesian inference for the half-normal and half-t distributions. We show that a generalized version of the normal-gamma distribution is conjugate to the half-normal likelihood and give the moments of this new distribution. The bias and coverage of the Bayesian posterior mean estimator of the halfnormal location parameter are compared with those of maximum likelihood based estimators. Inference for the half-t distribution is performed using Gibbs sampling and model comparison is carried out using Bayes factors. A real data example is presented which demonstrates the fitting of the half-normal and half-t models.

Date: 2005-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 5166c4419bc9/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws054709

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2024-05-12
Handle: RePEc:cte:wsrepe:ws054709