Interacting multiple -- Try algorithms with different proposal distributions
Roberto Casarin,
Radu Craiu and
Fabrizio Leisen
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. The extension with respect to the existing MCMC literature is twofold. The sampler proposed extends the basic MTM algorithm by allowing different proposal distributions in the multipletry generation step. We exploit the structure of the MTM algorithm with different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods and builds connections with the rapidly expanding world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. We provide numerical studies which show that the new algorithm can perform better than the basic MTM algorithm and that the interaction mechanism allows the IMTM to efficiently explore the state space.
Keywords: Interacting; Monte; Carlo; Markov; chain; Monte; Carlo; Multiple-try; Metropolis; Population; Monte; Carlo (search for similar items in EconPapers)
Date: 2011-03
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 5736b622f2dc/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws110402
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().