Densidad de predicción basada en momentos condicionados y máxima entropía: aplicación a la predicción de potencia eólica
Ismael Sánchez
Authors registered in the RePEc Author Service: Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
El cálculo de predicciones puntuales junto con su incertidumbre en forma de intervalo es, en la mayoría de aplicaciones, insuficiente. Especialmente cuando estemos asumiendo no linealidad en los datos, puesto que en estos casos, podrían existir incluso cambios en la distribución. Por ello será necesario, además de la predicción puntual, obtener una estimación de la densidad condicionada de la variable en el futuro dado su comportamiento actual, es decir, la densidad predictiva. En este trabajo proponemos una estimación de la densidad predictiva empleando diferentes distribuciones paramétricas como son la Normal Truncada, la Normal Censurada, la Beta y la de Máxima Entropía. Dichas distribuciones serán calculadas empleando los momentos condicionados estimados mediante un método de estimación recursiva. Se aplica el procedimiento a datos provenientes de energía eólica
Keywords: Densidad; predictiva; Máxima; entropía; Momentos; condicionados; Estimación; recursiva; Potencia; eólica (search for similar items in EconPapers)
Date: 2011-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 6b86eaadee37/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws111813
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().