Recombining partitions via unimodality tests
Adolfo Álvarez
Authors registered in the RePEc Author Service: Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this article we propose a recombination procedure for previously split data. It is basedon the study of modes in the density of the data, since departing from unimodality canbe a sign of the presence of clusters. We develop an algorithm that integrates a splitting process inherited from the SAR algorithm (Peña et al., 2004) with unimodality tests such as the dip test proposed by Hartigan and Hartigan (1985), and finally, we use anetwork configuration to visualize the results. We show that this can be a useful tool to detect heterogeneity in the data, but limited to univariate data because of the nature of the dip test. In a second stage we discuss the use of multivariate mode detection tests to avoid dimensionality reduction techniques such as projecting multivariate data into one dimension. The results of the application of multivariate unimodality tests show that is possible to detect the cluster structure of the data, although more research can be oriented to estimate the proper fine-tuning of some parameters of the test for a given dataset or distribution.
Keywords: Dip; test; Cluster; analysis; Unimodality (search for similar items in EconPapers)
Date: 2013-03
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 7ffb8bddfba6/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws130706
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().