Bayesian estimation of a dynamic conditional correlation model with multivariate Skew-Slash innovations
Cristina García de la Fuente,
Pedro Galeano and
Michael Peter Wiper
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Financial returns often present a complex relation with previous observations, along with a slight skewness and high kurtosis. As a consequence, we must pursue the use of flexible models that are able to seize these special features: a financial process that can expose the intertemporal relation between observations, together with a distribution that can capture asymmetry and heavy tails simultaneously. A multivariate extension of the GARCH such as the Dynamic Conditional Correlation model with Skew-Slashinnovations for financial time series in a Bayesian framework is proposed in the present document, and it is illustrated using an MCMC within Gibbs algorithm performed onsimulated data, as well as real data drawn from the daily closing prices of the DAX,CAC40, and Nikkei indices
Keywords: Bayesian; inference; Dynamic; Conditional; Correlation; Financial; time; series; Infinite; mixture; Kurtosis; Skew-Slash; MCMC (search for similar items in EconPapers)
Date: 2014-06
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 2dbf3488e129/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws141711
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().