Which quantile is the most informative? Maximum likelihood, maximum entropy and quantile regression
A. K. Bera,
A. F. Galvao ,
Gabriel Montes-Rojas () and
S. Y. Park
Working Papers from Department of Economics, City University London
Abstract:
This paper studies the connections among quantile regression, the asymmetric Laplace distribution, maximum likelihood and maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we propose an estimator based on the joint estimating equations. This approach delivers estimates for the slope parameters together with the associated “most probable” quantile. Similarly, this method can be seen as a penalized quantile regression estimator, where the penalty is given by deviations from the median regression. We derive the asymptotic properties of this estimator by showing consistency and asymptotic normality under certain regularity conditions. Finally, we illustrate the use of the estimator with a simple application to the U.S. wage data to evaluate the effect of training on wages.
Keywords: quantile regression; treatment effects; asymmetric laplace distribution (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://openaccess.city.ac.uk/id/eprint/1483/1/Whi ... Most_Informative.pdf
Related works:
Chapter: Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cty:dpaper:10/08
Access Statistics for this paper
More papers in Working Papers from Department of Economics, City University London Department of Economics, Social Sciences Building, City University London, Whiskin Street, London, EC1R 0JD, United Kingdom,. Contact information at EDIRC.
Bibliographic data for series maintained by Research Publications Librarian ().