Effects of Level Outliers on the Identification and Estimation of GARCH Models
Esther Ruiz (),
M. Angeles Carnero and
D. Pereira
No 21, Econometric Society 2004 Australasian Meetings from Econometric Society
Abstract:
In this paper, we study the effects caused by the presence of outliers on the identification and estimation of GARCH models. First, we derive the asymptotic biases of the sample autocorrelations of squared observations and their effects on some popular homoscedasticity tests when uncorrelated GARCH series are contaminated by level outliers. Then, we obtain the asymptotic biases of the OLS estimates of the parameters of ARCH(p) models and analyze their finite sample behavior by means of extensive Monte Carlo experiments. The finite sample results are also extended to ML estimates of ARCH(p) and GARCH(1,1) models. The results are illustrated analyzing real series of financial ret
Keywords: Autocorrelations; Heteroscedasticity testing; Maximum Likelihood; Ordinary Least Squares (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2004-08-11
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-fin
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://repec.org/esAUSM04/up.2133.1073929662.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:ausm04:21
Access Statistics for this paper
More papers in Econometric Society 2004 Australasian Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().