On the Asymptotic Efficiency of GMM
Jean-Pierre Florens and
Marine Carrasco
No 436, Econometric Society 2004 North American Winter Meetings from Econometric Society
Abstract:
This paper derives conditions under which the generalized method of moments (GMM) estimator is as efficient as the maximum likelihood estimator (MLE). The data are supposed to be drawn from a parametric family and to be stationary Markov. We study the efficiency of GMM in a general framework where the set of moment conditions may be finite, countable infinite, or a continuum. Our main result is the following. GMM estimator is efficient if and only if the true score belongs to the closure of the linear space spanned by the moment conditions. This result extends former ones in two dimensions: (a) the moments may be correlated, (b) the number of moment restrictions may be infinite. It suggests a way to construct estimators that are as efficient as MLE. In the last part of this paper, we show how to calculate the greatest lower bound of instrumental variable estimators
Keywords: Asymptotic efficiency; GMM; infinity of moment conditions; reproducing kernel Hilbert space; efficiency bound. (search for similar items in EconPapers)
JEL-codes: C2 (search for similar items in EconPapers)
Date: 2004-08-11
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://repec.org/esNAWM04/up.8798.1049157582.pdf (application/pdf)
Related works:
Journal Article: ON THE ASYMPTOTIC EFFICIENCY OF GMM (2014) 
Working Paper: On the Asymptotic Efficiency of GMM (2003) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:nawm04:436
Access Statistics for this paper
More papers in Econometric Society 2004 North American Winter Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().