The Spatial Analysis of Time Series
Joon Park
No 595, Econometric Society 2004 North American Winter Meetings from Econometric Society
Abstract:
In this paper, we propose a method of analyzing time series in the spatial domain. The analysis is based on the inference on the local time and its expectation. Both for the stationary and nonstationary time series, the spatial distributions are provided by the local time, and some of their important characteristics can be examined through the investigation of the expected local time. The methodology developed in the paper for the analysis of the expected local time applies to both stationary and nonstationary time series. The expected local time, however, reduces to the density of the time invariant distribution if the underlying time series is stationary. Our analysis may therefore be regarded as an extension to the nonstationary time series of the usual distributional analysis for the stationary time series. Our approach is nonparametric, and imposes very weak and minimal conditions on the underlying time series. In particular, we allow for observations generated from a wide class of stochastic processes with stationary and mixing increments, or general markov processes including virtually all diffusion models used in practice. Proposed are several interesting applications of our methodology, such as forecast of spatial distribution, test of structural break in spatial domain, specification test in spatial domain, test of equality in spatial distribution and test of spatial dominance
Keywords: local time; expected local time; semimartingale; markov process; diffusion; bootstrap; sub-sampling. (search for similar items in EconPapers)
JEL-codes: C14 C22 (search for similar items in EconPapers)
Date: 2004-08-11
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: The Spatial Analysis of Time Series (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:nawm04:595
Access Statistics for this paper
More papers in Econometric Society 2004 North American Winter Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().