Generalized (Cross) Spectral Tests for Optimal Forecasts and Conditional Predictive Ability Under Generalized Loss Functions
Tae Hwy Lee and
Yongmiao Hong
No 614, Econometric Society 2004 North American Winter Meetings from Econometric Society
Abstract:
Under the squared error loss, the optimal forecast is the conditional mean, and the one-step forecast error is a martingale difference (MD). The one-step forecast error forms the conditional moment condition obtained from the loss derivative with respect to the forecast. Similarly, under a generalized loss function, the derivative of the loss with respect to the forecast is an MD. Given a loss function, the forecast optimality may be checked by testing for the MD property of the loss derivative. In this paper, we show that the generalized (cross) spectral test of Hong (1999) may be used to evaluate the forecast optimality and that its asymptotic distribution is not affected by the parameter estimation uncertainty, provided that the training sample grows suitably faster than the validation sample and that the parameters are estimated at root-n rate. We also use the generalized (cross) spectral test to compare the conditional predictive ability of competing forecasting models by testing the MD property of their loss differential
Keywords: Generalized (cross) spectum; Optimal forecasts; Generalized loss functions; Parameter estimation error; Martingale difference; Conditional predictive ability (search for similar items in EconPapers)
JEL-codes: C22 C52 (search for similar items in EconPapers)
Date: 2004-08-11
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:nawm04:614
Access Statistics for this paper
More papers in Econometric Society 2004 North American Winter Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().